Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 115(5): 110678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406973

RESUMO

The Estonia potato cultivar Ando has shown elevated field resistance to Phytophthora infestans, even after being widely grown for over 40 years. A comprehensive transcriptional analysis was performed using RNA-seq from plant leaf tissues to gain insight into the mechanisms activated for the defense after infection. Pathogen infection in Ando resulted in about 5927 differentially expressed genes (DEGs) compared to 1161 DEGs in the susceptible cultivar Arielle. The expression levels of genes related to plant disease resistance such as serine/threonine kinase activity, signal transduction, plant-pathogen interaction, endocytosis, autophagy, mitogen-activated protein kinase (MAPK), and others were significantly enriched in the upregulated DEGs in Ando, whereas in the susceptible cultivar, only the pathway related to phenylpropanoid biosynthesis was enriched in the upregulated DEGs. However, in response to infection, photosynthesis was deregulated in Ando. Multi-signaling pathways of the salicylic-jasmonic-ethylene biosynthesis pathway were also activated in response to Phytophthora infestans infection.


Assuntos
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/genética , Solanum tuberosum/genética , Perfilação da Expressão Gênica , Resistência à Doença/genética , Transdução de Sinais , Transcriptoma
2.
Plants (Basel) ; 12(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299080

RESUMO

Volatile organic compounds (VOCs) play key roles in plant abiotic and biotic stress resistance, but even for widespread crops, there is limited information on variations in the magnitude and composition of constitutive VOC emissions among cultivars with varying stress resistance. The foliage VOC emissions from nine local and commercial potato cultivars (Alouette, Sarme, Kuras, Ando, Anti, Jõgeva Kollane, Teele, 1681-11, and Reet) with medium to late maturities and varying Phytophthora infestans (the causative agent of late blight disease) resistance backgrounds were analyzed to gain an insight into the genetic diversity of constitutive VOC emissions and to test the hypothesis that cultivars more resistant to Phytophthora infestans have greater VOC emissions and different VOC fingerprints. Forty-six VOCs were identified in the emission blends of potato leaves. The majority of the VOCs were sesquiterpenes (50% of the total number of compounds and 0.5-36.9% of the total emissions) and monoterpenes (30.4% of the total number of compounds and 57.8-92.5% of the total VOC emissions). Qualitative differences in leaf volatiles, mainly in sesquiterpenes, were related to the potato genotype background. Among the volatile groups, the monoterpenes α-pinene, ß-pinene, Δ3-carene, limonene, and p-cymene, the sesquiterpenes (E)-ß-caryophyllene and α-copaene, and green leaf volatile hexanal were the major volatiles in all cultivars. A higher share of VOCs known to have antimicrobial activities was observed. Interestingly, the cultivars were grouped into high and low resistance categories based on the VOC profiles, and the total terpenoid and total constitutive VOC emission scale positively with resistance. To support and expedite advances in breeding for resistance to diseases such as late blight disease, the plant research community must develop a fast and precise approach to measure disease resistance. We conclude that the blend of emitted volatiles is a fast, non-invasive, and promising indicator to identify cultivars resistant to potato late blight disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...